a^2+7^2=12^2

Simple and best practice solution for a^2+7^2=12^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+7^2=12^2 equation:



a^2+7^2=12^2
We move all terms to the left:
a^2+7^2-(12^2)=0
We add all the numbers together, and all the variables
a^2-95=0
a = 1; b = 0; c = -95;
Δ = b2-4ac
Δ = 02-4·1·(-95)
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{95}}{2*1}=\frac{0-2\sqrt{95}}{2} =-\frac{2\sqrt{95}}{2} =-\sqrt{95} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{95}}{2*1}=\frac{0+2\sqrt{95}}{2} =\frac{2\sqrt{95}}{2} =\sqrt{95} $

See similar equations:

| 3/1+a=4/5a= | | 3x(x+1)-7x(x+2)=0 | | v=18+64 | | 31​ +a=45​ a= | | -(6x+6)=-6x-3 | | 7x+1=3(2x+1)+x | | -18=2+y/5 | | 4=-0.5+c | | 8x-1+8x-1=10x+5 | | 10x+5/2=7x+8 | | 13=2x=-9 | | 12a=0.024 | | 3x+16+3x+16+11x-18+11x-18=360 | | 5x^=13x+17 | | 21x-19+21x-19+7x+31+7x+31=360 | | 0.02x+0.12=0.18 | | 3(y+8)=7y-16 | | a=10(-6)=54 | | 10c-(6)=54 | | 6y-13=2y+23 | | 5(x-6)+1=-34 | | 3(x-3)-5(2x+1)=0 | | 112x+4.5=40 | | 10x-15=30-5x | | 7^(n+2)=343 | | 87x-1=86 | | -1f+6.48=-8.48 | | y=+10=2y+3 | | x=123123^0 | | 7(5x+8)=-(x-9) | | -(7/8)x=-2 | | 3b-78=b |

Equations solver categories